Exciton dynamics in diamond and two-dimensional metal dichalcogenide enabled van der Waals heterostructures

Save to favorites

    Cardiff University
    United Kingdom
    Natural sciences


Two-dimensional (2D) materials offer a platform that allows the creation of heterostructures with a variety of properties. One- atom-thick crystals now comprise a large family of these materials, collectively covering a comprehensive range of features and numerous intrigue scientific challenges. For instance, the property of CVD synthesised atomically thin 2D materials have strong substrate dependence associated with their epitaxial lattice growth.

Moreover, atomically thin 2D materials can be assembled in vertical stacks that are held together by relatively weak van der Waals forces, enabling coupling between monolayer crystals with incommensurate lattices and arbitrary mutual rotation. In this project, we will fabricate new-type of heterostructures based on incommensurate molybdenum diselenide/disulfide (MoSe2 or MoS2) or tungsten disulfide/diselenide (WS2 or WSe2) monolayers with Diamond, and we will investigate a series intrigue excitonic bands hybridisation, exciton dynamics under radiation, and optoelectronic device studies (phototransistor, photodetectors and LEDs). These findings underpin strategies for band-structure engineering in semiconductor devices based on van der Waals heterostructures grown on Diamond.

What is funded

Self-Funded PhD Students Only


4 years full-time.


Candidates should hold a good bachelor’s degree (first or upper second-class honours degree) or a MSc degree in Physics or a related subject.

Applicants whose first language is not English will be required to demonstrate proficiency in the English language (IELTS 6.5 or equivalent).

How to Apply

Applicants should submit an application for postgraduate study via the Cardiff University webpages (https://www.cardiff.ac.uk/study/postgraduate/research/programmes/programme/physics-and-astronomy) including:

• an upload of your CV

• a personal statement/covering letter

• two references

• Current academic transcripts

Applicants should select Doctor of Philosophy, with a start date of October 2020

In the research proposal section of your application, please specify the project title and supervisors of this project and copy the project description in the text box provided. In the funding section, please select the ’self -funding’ option.



The responsibility for the funding offers published on this website, including the funding description, lies entirely with the publishing institutions. The application is handled uniquely by the employer, who is also fully responsible for the recruitment and selection processes.